翻訳と辞書 |
Burnside category : ウィキペディア英語版 | Burnside category In category theory and homotopy theory the Burnside category of a finite group ''G'' is a category whose objects are finite ''G''-sets and whose morphisms are (equivalence classes of) spans of ''G''-equivariant maps. It is a categorification of the Burnside ring of ''G''. ==Definitions== Let ''G'' be a finite group (in fact everything will work verbatim for a profinite group). Then for any two finite ''G''-sets ''X'' and ''Y'' we can define an equivalence relation among spans of ''G''-sets of the form where two spans and are equivalent if and only if there is a ''G''-equivariant bijection of ''U'' and ''W'' commuting with the projection maps to ''X'' and ''Y''. This set of equivalence classes form naturally a monoid under disjoint union, we indicate with the group completion of that monoid. Taking pullbacks induces natural maps . Finally we can define the Burnside category ''A(G)'' of ''G'' as the category whose objects are finite ''G''-sets and the morphisms spaces are the groups .
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Burnside category」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|